Journal of Conservative Dentistry
Home About us Editorial Board Instructions Submission Subscribe Advertise Contact e-Alerts Login 
Users Online: 1648
Print this page  Email this page Bookmark this page Small font sizeDefault font sizeIncrease font size

Table of Contents   
Year : 2021  |  Volume : 24  |  Issue : 1  |  Page : 67-71
A Comparative evaluation of the shaping ability, canal straightening, and preparation time of five different NiTi rotary files in simulated canals

1 Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
2 Department of Restorative Dentistry, Faculty of Dentistry, Malaysian Allied Health Sciences Academy (MAHSA) University, Bandar Saujana Putra, Selangor, Malaysia

Click here for correspondence address and email

Date of Submission08-Dec-2020
Date of Decision02-Jan-2021
Date of Acceptance23-Jan-2021
Date of Web Publication05-Jul-2021


Aim: The aim is to compare the shaping ability, canal straightening, and the preparation time of five different nickel-titanium rotary files in simulated J-shaped canals.
Materials and Methods: Ninety J-shaped canals in resin blocks were filled with 2% Methylene Blue solution and pre-instrumentation images were taken using a Leica microscope at a ×10. They were prepared until size 25 taper 0.04 using (n = 18 per group): T-Flex, HyFlex CM, Vortex Blue, S5, and iRace. After instrumentation, images were captured again, and composite images were made using Adobe Photoshop imaging software. The differences in canal width and canal curvature at each respective landmark were measured and compared. The preparation time and canal abbreviations were also recorded. Statistical analyses were performed using one-way ANOVA and post hoc Tukey HSD tests. The level of statistical significance was set to P = 0.05.
Results: HyFlex CM demonstrated the least difference in canal width after instrumentation, but no significant difference (P > 0.05) as compared to T-Flex and Vortex Blue. The mean canal straightening ranged between 0.91° and 7.65°. T-Flex created the least canal straightening after instrumentation which was significantly less (P < 0.05) than S5, but there was no significant difference (P > 0.05) when compared to HyFlex CM. Instrumentation with the S5 file was significantly faster (P < 0.05), whereas HyFlex CM was the slowest.
Conclusion: T-Flex, HyFlex CM, and Vortex Blue demonstrated better shaping ability, whilst T-Flex and HyFlex CM maintained the original canal curvatures well. S5 tended to straighten the canals and caused the greatest canal transportation, but it required the least amount of time to shape the canal.

Keywords: Endodontics; nickel-titanium; root canal preparation; shape-memory alloy; shaping ability

How to cite this article:
Siang Lin GS, Singbal KP, Abdul Ghani NR. A Comparative evaluation of the shaping ability, canal straightening, and preparation time of five different NiTi rotary files in simulated canals. J Conserv Dent 2021;24:67-71

How to cite this URL:
Siang Lin GS, Singbal KP, Abdul Ghani NR. A Comparative evaluation of the shaping ability, canal straightening, and preparation time of five different NiTi rotary files in simulated canals. J Conserv Dent [serial online] 2021 [cited 2022 Aug 11];24:67-71. Available from:

   Introduction Top

Thorough cleaning and shaping, followed by three-dimensional obturation of the intricate root canal system are essential in endodontic treatment.[1] A well-prepared canal should follow the original curvature and maintain the apical constriction without causing apical widening.[2] Previous studies suggested that a greater amount of debris and bacterial contamination can be removed by enlarging the canal at the apical third region to allow the irrigating solutions to reach all surfaces.[3],[4] Nonetheless, such a concept is still not widely accepted as clinicians are concerned about the iatrogenic damage to the apex during canal preparation. Thus, achieving a balance between adequate cleaning and shaping, and maintaining the curvature and shape of the canal is challenging.

The introduction of nickel-titanium (NiTi) rotary instruments has changed the perspective on how root canal shaping is performed.[1] The use of automated NiTi rotary instruments has made endodontic procedures less fatiguing and time-saving. Several NiTi rotary systems have been introduced into the market ever since their first appearance in the early 1990s.[5] The first NiTi rotary instrument was introduced by Dr. John McSpadden back in 1992 with an ISO-standard of 2% taper.[6] S5 rotary files, manufactured by Sendoline, Taby, Sweden, is one of the NiTi rotary systems that made of conventional NiTi alloy with S-shaped cross-section.[7] In 1999, electropolishing surface treatment on the rotary file was introduced by FKG, La Chaux-de-Fonds, Switzerland.[6] These Race systems with this electrochemical surface treatment have shown to improve fatigue resistance.[8] An improved version of the Race system, iRace, was introduced in 2011 which had the same surface treatment and design as RaCe.[9]

Later in 2007, M-wire was introduced which significantly improved the fatigue-resistant since it contained both the martensite and R phases. Subsequently, in 2010, controlled memory, CM-Wire with thermal treatment technology was introduced which yielded greater fatigue resistance.[10] HyFlex CM manufactured by Coltene, Altstätten, Switzerland, is one of the NiTi rotary systems that utilized such technology thus providing better flexibility and resistance to cyclic fatigue.[11] Although HyFlex CM files undergo plastic deformation during their manufacturing process, they tend to return to their initial condition after autoclaving.[12] In 2012, the heat-treated NiTi CM alloy file, Vortex Blue, was introduced by Dentsply Sirona, Pennsylvania, United States.[6] The file claimed to have improved flexibility, better cutting efficacy, and reduced shape memory while maintaining the curvature of the canal owing to the titanium oxide layer on its surface.[13]

T-Flex, a new heat-treated blue file system manufactured using CM-Wire was introduced by Shenzhen Perfect Medical Instruments, China, in early 2020. It was made up of high purity black NiTi alloy with low content of carbon and oxygen impurities. Furthermore, it has a rectangular-shaped cross-section, along with 4 cutting edges. Currently, the data from studies regarding the shaping ability of the mentioned file systems varies.[7],[9],[14],[15] To the best of our knowledge, literature regarding the shaping ability, degree of canal straightening, and the preparation time of this new T-Flex file system is unavailable.

Hence, this study aims to compare the shaping ability, degree of canal straightening, and the preparation time of five different rotary file systems: T-Flex, HyFlex CM, Vortex Blue, S5, and iRace in simulated canals. The null hypothesis tested was that there is no significant difference in the shaping ability, degree of canal straightening, and preparation time between the various tested rotary NiTi systems in simulated canals.

   Materials and Methods Top

Sample size calculation

The sample size was calculated based on the Bivariate Normal Distribution Model and Correlation (G*Power 3.1.9 for Windows, Franz Faul, Universität Kiel, Germany.) with an effect size of 0.5, α = 0.05, β = 0.95, and H0 = 0 keyed into an F-test family for the analysis. The final sample size was 90 samples.

Canal instrumentation

A total of 90 J-shaped simulated canals with 30° curvature, 0.15-mm apical diameter and 16-mm working length (WL) in clear resin blocks (Endo Training-Block, 0.02 Taper, Dentsply-Maillefer, US) were used. Each resin block was numbered accordingly and filled with 2% Methylene Blue dye solution (MKCD3437, Sigma Aldrich, USA). Five landmarks (L1 to L5) were identified on the surface of each resin block [Figure 1]a.[14]
Figure 1: (a) Five landmarks, from L1 to L5, were identified on the surface of each resin block. (b) Resin block was placed on a clamp during canal instrumentation

Click here to view

  • L1: Canal orifice
  • L2: Midpoint between L1 and L2
  • L3: The starting point of the curvature
  • L4: Apex of the curvature
  • L5: Endpoint of the canal preparation.

The resin blocks were viewed under a Leica microscope (Leica Microsystem Imaging Solutions, Cambridge, UK) at a standardized fixed distance and photographed at a magnification of ×10. The pre-instrumentation digital images were saved as JPEG files. The canal patency was confirmed for each resin block using ISO standard size 15 K-file (SybronEndo, Kerr Corporation, CA, US) to the WL (16 mm). They were then randomly assigned to five different groups (n = 18) and prepared with the crown-down technique using five different NiTi rotary file systems: T-Flex (Shenzhen Perfect Medical Instruments Co. Ltd., Guangdong, China), HyFlex CM (Coltene, Altstätten, Switzerland), Vortex Blue (Dentsply Sirona, Pennsylvania, United States), S5 (Sendoline, Täby, Sweden) and iRace (FKG Dentaire, Chaux-de-Fonds, Switzerland). All specimens were placed on a clamp [Figure 1]b to stabilize the resin block during instrumentation. All specimens were prepared by a single experienced operator according to the instrumentation sequence and recommended speed and torque values as described in [Table 1] to achieve the final apical preparation of size 25, taper 0.04. Copious irrigation with 5 ml of normal saline solution (Rinscap NS, Malaysia) was performed after each file usage.
Table 1: Types of rotary file used and the sequences of instrumentation

Click here to view

Canal preparation assessment

All specimens were repositioned in the same slot after instrumentation and photographed to obtain post-instrumentation images as described previously. The pre- and post-instrumentation images were superimposed [Figure 2] using imaging software (Adobe Photoshop; Adobe System, San Jose, CA) with 50% of transparency and a central axis line was drawn for each superimposed image. The canal widths and canal curvatures before and after instrumentation were measured at five landmarks (L1 to L5) using Leica Application Suite X (LAS X) microscope imaging software. The measurements were recorded by two blinded examiners.
Figure 2: Representative images of simulated canals instrumented by using (a) T-Flex, (b). HyFlex CM, (c) Vortex Blue, (d) S5, and (e) iRace

Click here to view

Preparation time

The time for canal preparation, i.e., total active instrumentation was recorded to the nearest second using a digital stopwatch. The time taken for glide path creation, irrigation, cleaning, and changing instruments within the sequence was not included.

Canal aberrations

The presence of canal aberrations such as danger zone, zipping, ledges, perforation, and intracanal file separation was recorded.[14]

Statistical analysis

Statistical analyses were performed using SPSS version 24 (IBM SPSS Inc, Chicago, IL, USA) software. The Shapiro–Wilk test revealed that the data were normally distributed and analyzed using one-way ANOVA and post hoc Tukey HSD tests. The level of statistical significance was set to P = 0.05.

   Results Top

In [Table 2], HyFlex CM showed the smallest difference in canal width (P < 0.05), followed by T-Flex, Vortex Blue, iRace and finally S5, but no significant difference (P > 0.05) was noted among T-Flex, HyFlex CM, and Vortex Blue. The mean canal straightening ranged between 0.91° and 7.65° of which T-Flex created the least canal straightening and S5 caused significantly (P < 0.05) greater canal straightening. shows the canal width differences at different landmarks after instrumentation. A marked difference in canal width at level L3 was found between pre-and post-instrumentation images for all files except S5 which was at level L4.
Table 2: Mean canal width differences (mm), degree of canal straightening (°) and preparation time (s) of different rotary files

Click here to view

S5 prepared the simulated canals significantly faster (P < 0.05), whereas HyFlex CM took the longest (P < 0.05). None of the NiTi rotary files experienced any fracture during instrumentation. However, danger zones in 2 samples and ledges in 3 samples were observed in the S5 group, whereas 1 sample showed a danger zone in the iRace group. Loss of WL was noted in 3 canals prepared with S5 wherein the mean was 3 mm. Otherwise, no other aberrations were noted, and all simulated canals remained patent after instrumentation.

   Discussion Top

Curvature deviation and canal transportation are considered undesirable iatrogenic accidents that can occur during canal preparation.[16] Poorly centered instruments will result in unequal dentine removal and increase the risk of canal transportation.[9] Furthermore, irregular canal preparations will promote the growth of bacteria, favor infected debris accumulation and prevent adequate obturation of the root canal system.[9],[17] For better comparison and standardization, size 25 with 0.04 taper was selected to be the final apical preparation as larger apical preparation with greater taper would result in greater canal straightening due to reduced file flexibility and possibly weaken the root dentine.[18]

The results of the present study suggested that HyFlex CM can create minimal canal transportation which is corroborated by previous studies.[15],[17] HyFlex CM instrument was reported to have the ability to prepare curved canals without causing any significant shaping error or instrument fracture during instrumentation.[15],[17] This can be attributed to the high flexibility of HyFlex CM as it is manufactured by a unique thermal pre-treatment technology that controls the file's memory.[11],[16] This also reduces the magnitude of the restoring force by changing their spiral shape during canal preparation, thereby allowing the CM wire to follow the canal curvature and preventing unnecessary iatrogenic errors.[9],[11],[19] However, the result of the present study is contrary to a previous study done by Saber et al.,[9] which found that iRace had better shaping efficacy with minimal transportation as compared to HyFlex CM though no significant difference was noted.

On the other hand, T-Flex was found to exhibit comparable shaping ability with HyFlex CM probably due to similar file properties with respect to controlled-memory technology. However, a literature search could not identify any other study which compared the shaping ability of T-Flex. A greater amount of resin was removed at L1 using T-Flex as compared to HyFlex CM and this could be explained by the larger taper of the T-Flex coronal flare file. Furthermore, the results of the present study showed that Vortex Blue had slightly inferior but comparable shaping ability with T-Flex and HyFlex CM, in line with a previous study done by Bansal et al.[20] This can be explained by their similar manufacturing process. Vortex Blue is subject to proprietary postsmachining heat treatment and coated with titanium oxide layers on its surface that give the instrument its flexibility, excellent fatigue resistance, and low Vickers surface hardness.[6],[13],[21] S5 revealed the poorest shaping ability and created more canal transportation, but the result obtained is not consistent with other file systems in previous similar studies.[7],[22]

The alloy microstructure of the NiTi rotary files is one of the aspects that need to be considered when performing such a study.[5],[21] The three main phases of alloy microstructure in the NiTi system are austenite, martensite, and R-phase. Unlike S5 and iRace systems, the microstructures of T-Flex, HyFlex CM, and Vortex Blue mostly consist of martensite, thus they exhibit less spring-back effect and prevent the straightening of the canal curvature.[6],[21] This explains the reason T-Flex, HyFlex CM, and Vortex Blue performed better resulting in lesser canal straightening with minimal canal transportation. Other factors that can affect the shaping ability of NiTi rotary files include the cross-sectional geometry and file taper.

T-Flex was found to create the least degree of canal straightening probably due to its small rectangular-shaped cross-sectional area which makes it more flexible and thus, reducing the tendency to straighten curved simulated canals. S5 has an S shaped cross-sectional design with two cutting edges and a previous study found it resulted in a more aggressive cutting action while enlarging canals.[23] S-shaped cross-section was also found to increase the “screw-in” tendency and caused iatrogenic errors such as the loss of apical stop and extremely large canal transportation which could be the reason 3 canals instrumented using S5 experienced a loss in WL.[21],[23]

In the present study, the preparation time included only active instrumentation since it is difficult to standardize the time taken for irrigation, cleaning, and changing instruments. S5 was significantly faster in shaping the canal, which could probably be due to the S-shaped cross-section and the austenitic phase of the S5 file which allowed it to have increased cutting efficacy.[21],[23] In general, all NiTi rotary file systems used in the present study were able to prepare the canals in <3 min which is considered relatively fast. Therefore, the time difference between each file system may be of subordinate importance from a clinical point of view. Ledge and danger zone were mostly found in simulated canals instrumented with S5. Although S5 and iRace consist of conventional NiTi alloys, only one danger zone was noted in a canal instrumented by iRace which could be due to the increased fatigue resistance of iRace after surface electropolishing.[24]

   Conclusion Top

Within the parameters of this study, T-Flex, HyFlex CM and Vortex Blue files demonstrated better shaping ability, while T-Flex and HyFlex CM maintained the original canal curvatures well. Although S5 required the least amount of time to shape the canal, it showed a marked tendency to straighten the canal and caused a greater degree of canal transportation.


The authors would like to acknowledge the management of the Faculty of Dentistry, MAHSA University, Malaysia in providing the equipment required to conduct this research.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

   References Top

Young GR, Parashos P, Messer HH. The principles of techniques for cleaning root canals. Aust Dent J 2007;52:S52-63.  Back to cited text no. 1
European Society of Endodontology. Quality guidelines for endodontic treatment: Consensus report of the European Society of Endodontology. Int Endod J 2006;39:921-30.  Back to cited text no. 2
Mickel AK, Chogle S, Liddle J, Huffaker K, Jones JJ. The role of apical size determination and enlargement in the reduction of intracanal bacteria. J Endod 2007;33:21-3.  Back to cited text no. 3
Card SJ, Sigurdsson A, Orstavik D, Trope M. The effectiveness of increased apical enlargement in reducing intracanal bacteria. J Endod 2002;28:779-83.  Back to cited text no. 4
Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod J 2000;33:297-310.  Back to cited text no. 5
Gavini G, Santos MD, Caldeira CL, Machado ME, Freire LG, Iglecias EF, et al. Nickel-titanium instruments in endodontics: A concise review of the state of the art. Braz Oral Res 2018;32:e67.  Back to cited text no. 6
Altunbas D, Kutuk B, Kustarci A. Shaping ability of reciprocating single-file and full-sequence rotary instrumentation systems in simulated curved canals. Eur J Dent 2015;9:346-51.  Back to cited text no. 7
[PUBMED]  [Full text]  
Anderson ME, Price JW, Parashos P. Fracture resistance of electropolished rotary nickel-titanium endodontic instruments. J Endod 2007;33:1212-6.  Back to cited text no. 8
Saber SE, Nagy MM, Schafer E. Comparative evaluation of the shaping ability of ProTaper Next, iRaCe and Hyflex CM rotary NiTi files in severely curved root canals. Int Endod J 2015;48:131-6.  Back to cited text no. 9
Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M. Fatigue testing of controlled memory wire nickel-titanium rotary instruments. J Endod 2011;37:997-1001.  Back to cited text no. 10
Plotino G, Testarelli L, Al-Sudani D, Pongione G, Grande NM, Gambarini G. Fatigue resistance of rotary instruments manufactured using different nickel-titanium alloys: A comparative study. Odontology 2014;102:31-5.  Back to cited text no. 11
Alfoqom Alazemi M, Bryant ST, Dummer PM. Deformation of HyFlex CM instruments and their shape recovery following heat sterilization. Int Endod J 2015;48:593-601.  Back to cited text no. 12
Plotino G, Grande NM, Cotti E, Testarelli L, Gambarini G. Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files. J Endod 2014;40:1451-3.  Back to cited text no. 13
Al-Dhbaan AA, Al-Omari MA, Mathew ST, Baseer MA. Shaping ability of ProTaper gold and WaveOne gold nickel-titanium rotary file in different canal configurations. Saudi Endod J 2018;8:202-7.  Back to cited text no. 14
  [Full text]  
Zhao D, Shen Y, Peng B, Haapasalo M. Micro-computed tomography evaluation of the preparation of mesiobuccal root canals in maxillary first molars with Hyflex CM, Twisted Files, and K3 instruments. J Endod 2013;39:385-8.  Back to cited text no. 15
Kishore A, Gurtu A, Bansal R, Singhal A, Mohan S, Mehrotra A. Comparison of canal transportation and centering ability of twisted files, HyFlex controlled memory, and wave one using computed tomography scan: An in vitro study. J Conserv Dent 2017;20:161-5.  Back to cited text no. 16
[PUBMED]  [Full text]  
Burklein S, Borjes L, Schafer E. Comparison of preparation of curved root canals with Hyflex CM and Revo-S rotary nickel-titanium instruments. Int Endod J 2014;47:470-6.  Back to cited text no. 17
Saleh AM, Vakili Gilani P, Tavanafar S, Schafer E. Shaping ability of 4 different single-file systems in simulated S-shaped canals. J Endod 2015;41:548-52.  Back to cited text no. 18
Zhou HM, Shen Y, Zheng W, Li L, Zheng YF, Haapasalo M. Mechanical properties of controlled memory and superelastic nickel-titanium wires used in the manufacture of rotary endodontic instruments. J Endod 2012;38:1535-40.  Back to cited text no. 19
Bansal S, Taneja S, Kumari M, Dhillon M. Comparative evaluation of the shaping ability of rotary systems of varying metallurgy in curved canals and its analysis using cone-beam computed tomography: An in vitro study. Endodontology 2019;31.  Back to cited text no. 20
Zupanc J, Vahdat-Pajouh N, Schafer E. New thermomechanically treated NiTi alloys a review. Int Endod J 2018;51:1088-103.  Back to cited text no. 21
Ceyhanli KT, Kamaci A, Taner M, Erdilek N, Celik D. Shaping ability of two M-wire and two traditional nickel-titanium instrumentation systems in S-shaped resin canals. Niger J Clin Pract 2015;18:713-7.  Back to cited text no. 22
[PUBMED]  [Full text]  
Donnermeyer D, Viedenz A, Schafer E, Burklein S. Impact of new cross-sectional designs on the shaping ability of rotary NiTi instruments in S-shaped canals. Odontology 2020;108:174-9.  Back to cited text no. 23
Lopes HP, Elias CN, Vieira MV, Vieira VT, de Souza LC, Dos Santos AL. Influence of surface roughness on the fatigue life of nickel-titanium rotary endodontic instruments. J Endod 2016;42:965-8.  Back to cited text no. 24

Correspondence Address:
Prof. Kiran Prabhakar Singbal
Department of Restorative Dentistry, Faculty of Dentistry, Malaysian Allied Health Sciences Academy University, Bandar Saujana Putra, 42610, Selangor
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/JCD.JCD_616_20

Rights and Permissions


  [Figure 1], [Figure 2]

  [Table 1], [Table 2]

This article has been cited by
1 Three-Dimensional Evaluation of the Root Apex of Permanent Maxillary Premolars: A Multicentric Study
Alfredo Iandolo, Massimo Pisano, Giuseppe Scelza, Dina Abdellatif, Stefano Martina
Applied Sciences. 2022; 12(12): 6159
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  

    Materials and Me...
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded87    
    Comments [Add]    
    Cited by others 1    

Recommend this journal