Journal of Conservative Dentistry
Home About us Editorial Board Instructions Submission Subscribe Advertise Contact e-Alerts Login 
Users Online: 6140
Print this page  Email this page Bookmark this page Small font sizeDefault font sizeIncrease font size

Table of Contents   
Year : 2019  |  Volume : 22  |  Issue : 3  |  Page : 216-222
Gutta-percha in endodontics - A comprehensive review of material science

Department of Conservative Dentistry and Endodontics, D. A. Pandu Memorial RV Dental College, Bengaluru, Karnataka, India

Click here for correspondence address and email

Date of Submission20-Sep-2018
Date of Decision20-Nov-2018
Date of Acceptance16-Apr-2019
Date of Web Publication03-Jul-2019


The complete and three-dimensional fluid tight seal of the root canal system is the final component of the endodontic triad. The long-standing and closest material which has fulfilled this criterion is gutta-percha (GP). Several materials have been tried and tested as an endodontic filling material, of which GP has been most extensively used for years and has established itself as a gold standard. In addition, it has proved itself successful with different techniques of obturation while maintaining its basic requisites. This article deals briefly with the history and evolution of GP, source, chemical composition, manufacturing, disinfection, cross-reactivity, and advancements in the material.

Keywords: Endodontics; gutta-percha; material science

How to cite this article:
Vishwanath V, Rao H M. Gutta-percha in endodontics - A comprehensive review of material science. J Conserv Dent 2019;22:216-22

How to cite this URL:
Vishwanath V, Rao H M. Gutta-percha in endodontics - A comprehensive review of material science. J Conserv Dent [serial online] 2019 [cited 2023 Dec 6];22:216-22. Available from:

   Introduction Top

There is always on-going research for newer endodontic obturating materials to obtain better materials than the existing ones to fulfil the biological requisites along with predictable long-term treatment outcome. Several materials have been tried and tested for filling the root canal. The results were variable, from satisfactory to disastrous, at times. Of all the tested materials, gutta-percha (GP) has stood the test of time for years with consistent clinical performance under various clinical situations across the world. As of now, no other materials can be considered as a possible replacement for GP in its various forms. Hence, GP can be considered as a gold standard material for obturation.

   History Top

History shows that GP has been used for a variety of purposes since the 17th century. Around 1656 an English natural historian John Tradescant introduced GP to Europe and called it “mazer wood.” In 1843, Dr. William Montgomerie further introduced GP to the West. His work was referred to the Medical Board of Calcutta and was awarded a gold medal by The Royal Society of Arts in London. The first patent for GP was obtained in 1864 by Alexander, Cabriot, and Duclos, which opened a Broadway for its industrial use. In 1845, Hancock and Bewley formed the GP Company in United Kingdom. People became infatuated with this new material and it became the first successful insulation for an underwater cable. Its use multiplied rapidly for manufacture of corks, pipes cements, thread, surgical instruments, garments, musical instruments, suspenders, window shades, carpets, gloves, mattresses, pillows, tents, umbrellas, golf balls (gutties), sheathing for ships, and boats were made wholly of GP.[1]

   Evolution of Gutta-Percha in Dentistry Top

  • 1846 - Alexander Cabriol surgical uses
  • 1847 - Edwin Truman-GP-Temporary filling material
  • 1847 - Hill-Hill's stopping restorative material-Mixture of bleached GP, carbonate of lime and silica [2]
  • 1849 - Chevalier, Poiseuille and Robert-GP tissue (laminated sheets)-Academy of Medicine, Paris
  • 1864 - First patent by Alexander, Cabriot, and Duclos
  • 1867 - Bowman-root filling material-St Louis Dental Society
  • 1883 - Perry-Softened GP with gold wire
  • 1887 - S. S. White Co.-Manufacture of GP
  • 1893 - William Herbt Rollins-Modified GP with Vermillion
  • 1911 - Webster-Heated GP-Sectional method of obturation
  • 1914 - Callahan-Softening and dissolution of GP
  • 1959 - Ingle and Levine-Standardized root canal instruments and materials
  • Standardized GP - 2nd International Conference of Endodontics at Philadelphia
  • 1967 - Schilder-Warm vertical compaction
  • 1976 - International standards organization group for approval of specification of endodontic instruments and materials
  • 1977 - Yee et al.-Injectable Thermoplasticized GP
  • 1978 - Ben Johnson– Carrier based GP-Thermafil
  • 1979 - McSpadden-Special compactor-Softening of GP by frictional heat
  • 1984 - Michanowicz-Low temperature Injectable GP-Ultrafils
  • 2006 - ANSI/ADA specification-GP cones-No.78.[3]

Some of commercially available GP points brand from earlier period (1970s) were manufactured by companies such as Dent-O-Lux, Indian Head, Mynol, Premier, and Tempryte. More recently, brands such as Tanari (Tanariman, Brazil), Meta (GN Injecta, Brazil), Dentsply (York, USA), Roeko (Coltene, Switzerland), Diadent (Korea), and Sybronendo (Orange, California) are popular since the evolution of NiTi rotary endodontic systems.

Apart from GP the alternate materials which have been tried are plastics (Resilon), solids or metal cores (Silver points, Coated cones, Gold, Stainless Steel, Titanium and Irridio-Platinum), and cements and pastes (Calcium Phosphate, Gutta Flow, Hydron, MTA). However, many of these materials do not meet the complete requirements for obturation of root canal systems. Only calcium silicate-based materials like MTA and related bioactive cements have shown promising results.

   Source Top

GP is a dry coagulated sap of a peculiar species of tropical plants. It was first obtained from Sapotaceae family of trees, which are abundant in the Malay Peninsula (South East Asia). In Malay-getah perca means “percha sap” (plant's name). The trees are mainly found in Malay Archipelago, Singapore, Indonesia, Sumatra, Philippines, Brazil, South America, and other tropical countries. These trees are medium to tall (approximately 30 m) in height, and up to 1 m in trunk diameter. It is usually imported from Central South America for its use in dentistry, which is one of the reasons for its high cost.[4]

There are many species of Palaquium genus that yield GP of which four are found in India:

  1. P. obovatum-Assam
  2. P. polyanthum-Assam
  3. P. ellipticum-Western ghats
  4. P. gutta-Lalbagh Botanical garden, Bengaluru, Karnataka.

   Composition Top

GP is a trans-isomer of polyisoprene. Its chemical structure is 1, 4, trans–polyisoprene. The molecular structure of GP is close to that of natural rubber from Hevea brasiliensis, which is a cis-isomer of polyisoprene. Both are high-molecular-weight polymers and structured from the same basic building unit or isoprenemer [Table 1].[1]
Table 1: Chemistry

Click here to view

   Manufacture Top

A series of “V” shaped or concentric cuts are made on the bark for the collection of milky juice in Areca palm conic receptacles. The juice is put into a pot and boiled with a little water to prevent its hardening on exposure to air. It is then boiled and kneaded under running water to remove particles of wood and bark; rolled into sheets to expel the air enabling it to dry quickly. It is placed in a revolving masticator and heated until it is fit for use. The chemical method of coagulation is by the addition of alcohol and creosote mixture (20:1), ammonia, limewater, or caustic soda.[2]

Obach's technique

  • The obtained pulp is heated to 75°C in the presence of water to release the GP threads (Flocculated GP known as “yellow gutta”) and then cooled to 45°C
  • At below 0°C temperature, this yellow gutta is mixed with cold industrial gasoline to dissolve the resins and denature any residual proteins
  • This mixture is dissolved in warm water at 75°C, and dirt particulates are allowed to precipitate
  • The residual greenish-yellow solution is bleached with activated clay, filtered to remove any particulate, and then steam distilled to remove the gasoline
  • The final commercially available formulation is “Final ultra-pure” (white) GP modified with appropriate fillers to overcome the odor of gasoline
  • It is finally combined with fillers, radiopaque material, and plasticizers to obtain GP cones for endodontic procedures with the composition of 20% GP, 56% zinc oxide filler, 11% radiopacifier (barium sulfate), and 3% plasticizers (waxes or resins).[2]

In crude form, its composition is made of Gutta (75%–82%), Alban (14%–16%), Fluavil (4%–6%), and also tannin, salts, and saccharine. The elasticity of GP and its plasticity at elevated temperature is determined by Gutta. Alban does not seem to have any harmful effect on the technical properties of GP. Fluavil is a lemon-yellow, amorphous body, having the composition (C10H16O). When it occurs in gutta in larger quantities it renders this material brittle.

It is relatively easy to make GP sticks as not much of precision is required. However, to make endodontic cones, the precision of standardization has to be maintained. It requires a special technology where all ingredients are blended and passed through the specification molds running under high vacuum suction or by injection molding and hand rolling.[2],[4]

   Chemical Phases of Gutta-Percha Top

C.W Bunn in the year 1942, reported that the GP polymer could exist in two distinctly different crystalline forms, which he termed “alpha” and “beta” modifications. These forms were “trans” isomer, differing only in single bond configuration and molecular repeat distance, and hence could be converted into each other.

The “alpha” form occurs in the tree, which is the natural form. Most of the commercially available products are in the “beta” form. When the alpha form is heated >65°C, it becomes amorphous and melts. If this amorphous material is cooled rapidly, β form recrystallizes whereas if it is cooled extremely slowly (0.5°C/h), α form recrystallizes. The beta form becomes amorphous when heated at 56°C, which is a considerable 9° less than the melting point of the alpha form and the factor determining the melting point of “alpha” and “beta” GP is the rate of cooling which, in turn, controls the extent and character of crystallinity in the material formed [Table 2].[5]
Table 2: Characteristics

Click here to view

   Physical and Thermo-Mechanical Properties Top

GP is a thermoplastic and viscoelastic material which is temperature sensitive. At ranges of ambient room temperature, it exists in a stiff and solid state. It becomes brittle on prolonged exposure to light and air due to oxidation. It becomes soft at 60°C and it melts around 95°C–100°C with partial degradation. Decrease in temperature increase the strength and resilience and vice versa, especially when temperature exceeds 30°C.[6] The physical properties of tensile strength, stiffness, brittleness, and radiopacity depend on the organic (GP polymer and wax/resins) and inorganic components (zinc oxide and metal sulfates). Zinc oxide increases brittleness, decreases percentage elongation and ultimate tensile strength.[7] An account of the tensile strength of GP gives a reliable measure of its properties than compressive tests. Materials with the predominant property of ductility do not exhibit repeatable values for compression on account of resulting complicated stress patterns.

The property of viscoelasticity is critical during condensation of GP in obturation procedures which permits plastic deformation of the material under continuous load causing the material to flow.[6] The transformation temperatures of dental GP are 48.6°C–55.7°C for the β-to the α-phase transition, and 59.9°C–62.3°C for the α-to the amorphous phase transition, depending on the specific compound; heating dental GP to 130°C causes physical changes or degradation.[8]

An account of average values of few physical properties of some clinically usable GP points from various manufacturers is tabulated below. However, continuous modifications have been attempted over the years by the addition of various materials to improve the properties to result in better clinical performance [Table 3].[6]
Table 3: Physical properties of Gutta percha

Click here to view

   Physical Forms of Gutta-Percha Top

  1. Solid core GP points

  2. Available as standardized and non-standardized points (beta phase).

    • Standardized points: Correspond to instrument taper and apical gauge
    • Nonstandardized points: Variable taper, the tip of point to be adjusted after apical gauging to obtain an optimum fit and apical seal.

    Used with cold lateral condensation with warm vertical compaction.

  3. Thermomechanical compactable GP
  4. Thermo plasticized GP:

  5. Available in injectable form (alpha phase). Special heaters are provided in the systems to attain flowable temperature of GP. The apical seal is accomplished with the plugging of master cone and then the injectable GP is backfilled.

    • Solid core system
    • Injectable form.[2]

  6. Cold flowable GP.

It is eugenol-free, self-polymerizing filling system in which the gutta percha in powder form is combined with a resin sealer in one capsule. It exhibits viscoelastic property of thixotropism and therefore has a better flow under shear stress which, in turn, provides good sealing ability.

   Modifications of Gutta Percha Top

Attempts have been made to obtain optimum seal and therapeutic effects by addition of various materials [Figure 1].
Figure 1: Types of modified gutta percha

Click here to view

Surface modified gutta percha

One of the drawbacks of GP is lack of true adhesion. Hence, improvization for enhanced adaptability of GP has been attempted by surface modification with the following materials.

  • Resin coated - A resin is created by combining diisocyanate with hydroxyl-terminated polybutadiene, as the latter is bondable to hydrophobic polyisoprene (PI). This is followed by the grafting of a hydrophilic methacrylate functional group to the other isocyanato group of the diisocyanate, producing a GP resin coating that is bondable to a methacrylate-based resin sealer [9]
  • Glass ionomer coated-Results in a true single cone monoblock obturation. Glass ionomer creates an ionic bond with the dentin, is nonresorbable and not affected by the presence of residual sodium hypochlorite
  • Bioceramic coated-Bioceramic materials are incorporated and coated onto GP points which are available in specific sizes. They enhance the quality of obturation along with specific hydrophilic bioceramic sealers. These materials are in the form of nano particles (calcium phosphate silicates) to increase their activity and to bring about better sealing by taking advantage of the natural moisture of dentin. These kinds of obturation bring about slight expansion rather than the usual shrinkage, which actually is beneficial to seal the canals [10]
  • Nonthermal plasma-Argon and oxygen plasma sprayed to GP improve the wettability of GP by the sealer, favoring adhesion. Argon plasma led to chemical modification and surface etching while oxygen plasma increased surface roughness.[11]

Medicated gutta-percha

  • Iodoform: IGP contains 10% iodoform (CHI3), a crystalline substance, which is soluble in choloroform and ether but low solubility in water. They interact with cell walls of microorganisms causing pore formation or generate solid-liquid interfaces at the lipid membrane level, which lead to loss of cytosol material and enzyme denaturation. It is said to inhibit the growth of Staphylococcus aureus, Streptococcus sanguis, Actinomyces odontolyticus, and Fusobacterium nucleatum, but not Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa[12]
  • Calcium hydroxide: Calcium hydroxide Gutta percha (CGG) points combine the efficiency of calcium hydroxide and bio-inertness of GP to be used as temporary intracanal medicaments. The action is directly correlated to the pH which is influenced by the concentration and rate of release of hydroxyl ions. When used as an intra-canal medicament in endodontic therapy, moisture in the canal activates the calcium hydroxide and the pH in the canal rises to the level of 12+ within minutes. The resultant antimicrobial effects may be evident within 1–4 weeks [13]
  • Chlorhexidine: Chlorhexidine (CHX) is a broad-spectrum anti-infective agent which is a synthetic cationic bis-guanide. It acts by the interaction of the positively charged CHX molecule and negatively charged phosphate groups on microbial cell walls causing a change in osmotic equilibrium. CHX is both bacteriostatic (0.2%) and bactericidal (2%) and can penetrate the microbial cell wall by altering its permeability. Chlorhexidine impregnated GP points (Activ points) are known to be effective against E. faecalis and Candida albicans [14]
  • Tetracycline: Tetracycline Gutta percha (TGP) contains 20% GP, 57% zinc oxide, 10% tetracycline, 10% barium sulfate, and 3% beeswax. They remain inert pending contact with tissue fluids; gets activated and become available to inhibit any bacteria that remain in the root canal or those that enter the canal through leakage. The greatest antimicrobial effect was seen on S. aureus and less on E. faecalis and P. aeruginosa[15]
  • Cetylpyridinium chloride (CPC): CPC, a quaternary ammonium compound and a cationic surfactant, has been used in antiseptic products and drugs. Although the antimicrobial mechanisms of CPC are not well understood, it appears to damage microbial membranes, thereby eventually killing microbes. Addition of CPC improved the antimicrobial property of GP in proportion to the amount added. However, this GP is not commercially available yet.[16]

Nanoparticles enriched gutta-percha

The era of nanotechnology has turned into the best innovation in the fields of health sciences and innovation. Nano is derived from the Greek word “υαυος” which means dwarf, and it is the science of producing functional materials and structures in the range of 0.1 nm to 100 nm. Nano particulates show higher antibacterial action on account of their polycationic or polyanionic nature, which expands their applications in various fields.

Nanodiamond-gutta-percha composite biomaterials

Nanodiamond-GP composite embedded with nanodiamond amoxicillin conjugates was developed which could reduce the likelihood of root canal reinfection and enhance the treatment outcomes. NDs are carbon nanoparticles that are roughly 4μ - 6nm in diameter. It is a biocompatible platform for drug delivery, and they have demonstrated antimicrobial activity. Due to the ND surface chemistry, a broad-spectrum antibiotic, such as amoxicillin, can be adsorbed to the surface facilitating the eradication of residual bacteria within the root canal system after completion of obturation. The homogeneous scattering of NDs all through the GP matrix increases the mechanical properties, which enhance the success rate of conventional endodontic therapies and reduce the need for additional treatments, including retreats and apical surgeries.[17]

Silver nanoparticles coated gutta-percha

Silver (Ag) ions or salts possess sustained ion release, long-term antibacterial activity, low toxicity, good biocompatibility with human cells and low bacterial resistance. Dianat and Ataie have introduced nanosilver gutta-percha in an attempt to upgrade the antibacterial effect of GP, where the standard GP is coated with nanosilver particles. It demonstrates a significant antibacterial effect against E. faecalis, Staphylococcus aurous, Candida albicans, and E. coli.[18]

   Clinical Considerations Top

Disinfection of gutta-percha

Handling, aerosols, and physical sources during the storage process can contaminate GP. The conventional process in which moist or dry heat is used cannot sterilize GP because this may cause irreversible physical or chemical alteration to the structure. Rapid chairside chemical disinfection is needed as the amount of GP points needed cannot be predicted beforehand. Sodium hypochlorite, glutaraldehyde, alcohol, iodine compounds, and hydrogen peroxide have been tried as GP cones disinfectant. The time ranges from a few seconds to substantial periods for these substances to kill microorganisms. NaOCl at 5.25% concentration is an effective agent for a rapid high disinfection level of GP cones. 2% CHX kills all vegetative forms in a short period but did not eliminate Bacillus subtilis spores within the times tested.[19] 2% peracetic acid solution is effective against some microorganisms in biofilms on GP cones at 1 min of exposure.[20]

Herbal extracts such as lemon grass oil, basil oil, and obicure tea extract, are probable alternatives for chairside disinfection of GP cones and have shown good results.[21] Ethanolic extracts of Neem, Aloe vera, and Neem + Aloe Vera have been seen to be successful in decontaminating GP cones against E. coli and S. aureus (common contaminants of GP cones).[22]

Removal of gutta-percha

GP solvents are used during retreatment or solvent based obturation technique as attempt in complete mechanical removal may cause perforation, straightening of canals or change in the internal anatomy compromising the tooth and treatment outcome. Benzene and carbon tetrachloride have been discontinued as solvents due to their toxicity. Others include eucalyptol oil, chloroform, methylchloroform, and xylene. The eucalyptol oil does not effectively dissolve GP at room temperature and has to be heated to act relatively fast. Hence, it not widely used. Chloroform is preferred due to volatility, cost, availability, better odor, and compatibility with zinc oxide-eugenol-based root canal sealers. Trichloroethylene, cineole, orange oil, Coe Paste Remover, halothane, anise oil, anethole, bergamot oil, terpineol in cineole, chlorobutanol in cineole, methoxyflurane, and diethyl ether have been tried and tested.[23]

   Biological Properties and Tissue Interaction Top


GP and gutta-balata are derived from the same botanical family as the rubber tree, and related to latex. It is reported that occasionally in the short supply of GP, the manufacturers add some amount gutta-balata or synthetic trans-polyisoprene to the GP cones which is not disclosed. It is seen that raw gutta-balata releases proteins that cross-react with Hevea latex and the use of a gutta-balata-containing product could potentially place a high latex allergic patient at risk for an allergic reaction even when proper instrumentation and obturation techniques are used to confine the material within the root canal system.[24]

Reaction of dental pulp

GP has been used as a temporary restorative material owing to its ease of placement and removal. The teeth become sensitive after its insertion into the dentin. Some of the teeth were extracted in an experimental study, and the histologic picture showed pathologic reaction in the pulp tissue, which changed with increasing observation period. The most typical reactions were:

  1. Odontoblast nuclei in the pulpal ends of the cut dentinal tubules [Table 4]
  2. A break in the continuity of the pulp dentinal membrane
  3. Neutrophilic leukocytes along the predentine border, in the odontoblast layer and in the adjacent layer of Weil
  4. Capillaries in the odontoblast layer were filled with blood, and in most cases extravasated erythrocytes were scattered along with neutrophilic leukocytes and lymphocytes.[25]
Table 4: Merits and demerits of gutta percha

Click here to view

Reaction of connective tissue

GP has been the least irritating root canal filling material till date. Fibrous encapsulation, calcification, and foreign-body reactions are some of the common responses to GP extruded into the periapical tissues. Small amounts of plasticizers, age resisters, coloring agents, and other additives do not play a major role in influencing the irritational qualities of GP cones. An inflammatory reaction is found only when an irritating material made up a significant percentage of the cone, as in calcium hydroxide enriched GP points. Therefore, the use of other additives should be kept to optimum levels.[26]

Reaction of gingival fibroblast and epithelial tumor cells

Increased connective tissue invagination with better healing of periradicular lesions have been attributed to calcium hydroxide and chlorhexidine-containing GP. Some authors described the destruction of epithelial tumor cells if present in periradicular lesions. Direct exposure of cells to the above materials has shown changes in cell morphology. The release of prostaglandin has been described as a helpful marker of inflammatory processes in pulp tissue. Conventional GP points have nonsignificant effect on the prostaglandin release by gingival fibroblasts. On contrary, some studies have shown that GP points containing calcium hydroxide or chlorhexidine, led to an inhibition of gingival fibroblast growth. Exposure of epithelial tumor cell cultures to the various tested materials led to morphological cell irregularities and influenced the proliferation patterns.[27]


GP materials are primarily used for obturation, their interaction with living tissues is still being studied. Polybutadiene, a polymer with similar chemistry to PI, the base material of GP induces differentiation of dental pulp stem cells (DPSC), when its properties were modified by ZnO nanoparticles and dexamethasone. However, the mechanical strength and roughness imparted by the nanoparticles contributed to promoting differentiation of DPSC placed in contact with the material surfaces. It is probable that in addition to obturation, GP nanocomposites can act as scaffolds for dental tissue regeneration.[28]

   Merits and Demerits of Gutta-Percha Top

[Table 4] Merits and Demerits of gutta percha.

   Other Uses of Gutta-Percha Top

Assessment of pulp status

Thermal stimulation is a standard means of assessing the vitality of teeth and hot GP has conventionally been the most popular. As controlled temperature is difficult to attain, it is imperative that heated GP should not be in contact with the tooth surface for more than 3–5 s, else may result in damage of an otherwise healthy pulp. Rickoff et al. showed that GP used as above-increased pulp temperature only <2°C for <5 s of application – a temperature change that is unlikely to cause pulp damage.[29]

Tracing sinus tract

GP points are used to trace through sinus tracts to locate the source of infection and the offending tooth. Studies have indicated that GP is beneficial as a diagnostic adjunct and can be precise within 3 mm from the lesion. A medium-sized cone (size 25–40) has been found satisfactory due to its stiffness and ease of placement.[30]

Manual dynamic irrigation

GP points are used for manual agitation of irrigants in the root canal to improve the cleansing ability of debriding and disinfecting solutions to remove the smear layer.


The base plate and temporary stopping GP are used for this purpose after intra coronal tooth preparation and for double seal during endodontic interappointment periods. However, zinc oxide eugenol cements provide a better seal than GP. Hence GP for this purpose should be used discretely.[31]

Assessment of intracoronal tooth preparation

Assessment of intracoronal tooth preparation was used to check undercuts in tooth preparation requiring indirect intracoronal restorations.

Markers for orthodontic and prosthetic implant placement

The use of guides for radiographic evaluation and surgical placement of dental implants can improve the final outcome of treatment for patients receiving implants. To aid in the determination of the ideal site for the implant, guides with markers are useful. A material to be used as a guide during a computed tomography scan, should contain no metal to eliminate the possibility of scatter. Since GP fulfills this criterion, possesses radiopacity and can be formed to a desired shape, it is the material of choice for this purpose.[32]

   Conclusion Top

It can be concluded that the availability, ease of manipulation, chemical inertness, and cost effectiveness of GP along with newer techniques which are easy to adapt in clinical use have made this material indispensable in the field of endodontics.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

   References Top

Goodman A, Schilder H, Aldrich W. The thermomechanical properties of gutta-percha. II. The history and molecular chemistry of gutta-percha. Oral Surg Oral Med Oral Pathol 1974;37:954-61.  Back to cited text no. 1
Belsare LD, Gade VJ, Patil S, Bhede RR, Gade J. Gutta percha – A gold standard for obturation in dentistry. J Int J Ther Appl 2015;20:5.  Back to cited text no. 2
Prakash R, Gopikrishna V, Kandaswamy D. Gutta-percha: An untold story. Endodontology 2005;17:32-6.  Back to cited text no. 3
Borthakur BJ. Search for indigenous gutta percha. Endodontology 2002;14:24-7.  Back to cited text no. 4
Combe EC, Cohen BD, Cummings K. Alpha- and beta-forms of gutta-percha in products for root canal filling. Int Endod J 2001;34:447-51.  Back to cited text no. 5
Friedman CE, Sandrik JL, Heuer MA, Rapp GW. Composition and physical properties of gutta-percha endodontic filling materials. J Endod 1977;3:304-8.  Back to cited text no. 6
Maniglia-Ferreira C, Silva JB Jr., Paula RC, Feitosa JP, Cortez DG, Zaia AA, et al. Brazilian gutta-percha points. Part I: Chemical composition and X-ray diffraction analysis. Braz Oral Res 2005;19:193-7.  Back to cited text no. 7
Maniglia-Ferreira C, Gurgel-Filho ED, Silva JB Jr., Paula RC, Feitosa JP, Gomes BP, et al. Brazilian gutta-percha points. Part II: Thermal properties. Braz Oral Res 2007;21:29-34.  Back to cited text no. 8
Tay FR, Loushine RJ, Monticelli F, Weller RN, Breschi L, Ferrari M, et al. Effectiveness of resin-coated gutta-percha cones and a dual-cured, hydrophilic methacrylate resin-based sealer in obturating root canals. J Endod 2005;31:659-64.  Back to cited text no. 9
Manappallil JJ. Basic dental materials. JP Medical Ltd; 2015 Nov 30.  Back to cited text no. 10
Prado M, Menezes MS, Gomes BP, Barbosa CA, Athias L, Simão RA. Surface modification of gutta-percha cones by non-thermal plasma. Mater Sci Eng C Mater Biol Appl 2016;68:343-9.  Back to cited text no. 11
Shur AL, Sedgley CM, Fenno JC. The antimicrobial efficacy of 'MGP' gutta-percha in vitro. Int Endod J 2003;36:616-21.  Back to cited text no. 12
Hegde MN, Niaz F. Case reports on the clinical use of calcium hydroxide points as an intracanal medicament. Endodontology 2006;18:23-7.  Back to cited text no. 13
Naik B, Shetty S, Yeli M. Antimicrobial activity of gutta-percha points containing root canal medications against E. faecalis and Candida albicans in simulated root canals–an in vitro study. Endodontology. 2013;25:8-18.  Back to cited text no. 14
Bodrumlu E, Alaçam T, Semiz M. The antimicrobial and antifungal efficacy of tetracycline-integrated gutta-percha. Indian J Dent Res 2008;19:112-5.  Back to cited text no. 15
[PUBMED]  [Full text]  
Tomino M, Nagano K, Hayashi T, Kuroki K, Kawai T. Antimicrobial efficacy of gutta-percha supplemented with cetylpyridinium chloride. J Oral Sci 2016;58:277-82.  Back to cited text no. 16
Lee DK, Kim SV, Limansubroto AN, Yen A, Soundia A, Wang CY, et al. Nanodiamond-gutta percha composite biomaterials for root canal therapy. ACS Nano 2015;9:11490-501.  Back to cited text no. 17
Shantiaee Y, Maziar F, Dianat O, Mahjour F. Comparing microleakage in root canals obturated with nanosilver coated gutta-percha to standard gutta-percha by two different methods. Iran Endod J 2011;6:140-5.  Back to cited text no. 18
Gomes BP, Vianna ME, Matsumoto CU, Rossi Vde P, Zaia AA, Ferraz CC, et al. Disinfection of gutta-percha cones with chlorhexidine and sodium hypochlorite. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;100:512-7.  Back to cited text no. 19
Salvia AC, Teodoro GR, Balducci I, Koga-Ito CY, Oliveira SH. Effectiveness of 2% peracetic acid for the disinfection of gutta-percha cones. Braz Oral Res 2011;25:23-7.  Back to cited text no. 20
Makade CS, Shenoi PR, Morey E, Paralikar AV. Evaluation of antimicrobial activity and efficacy of herbal oils and extracts in disinfection of gutta percha cones before obturation. Restor Dent Endod 2017;42:264-72.  Back to cited text no. 21
Natasha FA, Dutta KU, Moniruzzaman Mollah AK. Antimicrobial and decontamination efficacy of neem, Aloe vera and neem+ Aloe vera in guttapercha (gp) cones using Escherichia coli and Staphylococcus aureus as contaminants. Asian J Microbiol Biotech Environ Sci 2015;17:917-20.  Back to cited text no. 22
Wourms DJ, Campbell AD, Hicks ML, Pelleu GB Jr. Alternative solvents to chloroform for gutta-percha removal. J Endod 1990;16:224-6.  Back to cited text no. 23
Costa GE, Johnson JD, Hamilton RG. Cross-reactivity studies of gutta-percha, gutta-balata, and natural rubber latex (Hevea brasiliensis). J Endod 2001;27:584-7.  Back to cited text no. 24
James VE, Schour I, Spence JM. Response of human pulp to gutta-percha and cavity preparation. J Am Dent Assoc 1954;49:639-50.  Back to cited text no. 25
Wolfson EM, Seltzer S. Reaction of rat connective tissue to some gutta-percha formulations. J Endod 1975;1:395-402.  Back to cited text no. 26
Willershausen B, Hagedorn B, Tekyatan H, Briseño Marroquín B. Effect of calcium hydroxide and chlorhexidine based gutta-percha points on gingival fibroblasts and epithelial tumor cells. Eur J Med Res 2004;9:345-50.  Back to cited text no. 27
Zhang L, Yu Y, Joubert C, Bruder G, Liu Y, Chang CC, et al. Differentiation of dental pulp stem cells on gutta-percha scaffolds. Polymers 2016;8:193.  Back to cited text no. 28
Rickoff B, Trowbridge H, Baker J, Fuss Z, Bender IB. Effects of thermal vitality tests on human dental pulp. J Endod 1988;14:482-5.  Back to cited text no. 29
Baldassari-Cruz LA, Walton RE. OR 3 effectiveness of gutta percha tracing sinus tracts as a diagnostic aid in endodontics. J Endod 1999;25:283.  Back to cited text no. 30
Sivakumar JS, Suresh Kumar BN, Shyamala PV. Role of provisional restorations in endodontic therapy. J Pharm Bioallied Sci 2013;5:S120-4.  Back to cited text no. 31
Pesun IJ, Gardner FM. Fabrication of a guide for radiographic evaluation and surgical placement of implants. J Prosthet Dent 1995;73:548-52.  Back to cited text no. 32

Correspondence Address:
Dr. Vijetha Vishwanath
Department of Conservative Dentistry and Endodontics, D A Pandu Memorial RV Dental College and Hospital, JP Nagar, Bengaluru - 560 078, Karnataka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/JCD.JCD_420_18

Rights and Permissions


  [Figure 1]

  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 In-situ nano-Ag coated gutta percha cones to counteract internal endodontic failures through bacterial infections
K. Monisha, S. Antinate Shilpa, G.S. Hikku
Materials Chemistry and Physics. 2023; : 127532
[Pubmed] | [DOI]
2 Functionalization of gutta-percha surfaces with argon and oxygen plasma treatments to enhance adhesiveness
Inês Ferreira, Cláudia Lopes, Marco S. Rodrigues, Pedro V. Rodrigues, Cidália Castro, Ana Cristina Braga, Maria Lopes, Filipe Vaz, Irene Pina-Vaz, Benjamin Martín-Biedma
Scientific Reports. 2023; 13(1)
[Pubmed] | [DOI]
3 Biological considerations of dental materials as orifice barriers for restoring root-filled teeth
ME Wylie, P Parashos, JR Fernando, JEA Palamara, AJ Sloan
Australian Dental Journal. 2023;
[Pubmed] | [DOI]
4 History of dental biomaterials: biocompatibility, durability and still open challenges
Elia Marin
Heritage Science. 2023; 11(1)
[Pubmed] | [DOI]
5 Evaluation of reinforcement effect of capillary condensation technique in teeth with simulated internal resorption cavity: An in vitro study
DurgaPrasad Naik Ketavatu, GirijaS Sajjan, RKalyan Satish, PVenkata Karteekvarma, BV Sindhuja, MSuvarna Suni
Journal of Datta Meghe Institute of Medical Sciences University. 2023; 18(1): 44
[Pubmed] | [DOI]
6 Tip and taper compatibility of accessory gutta-percha points with rotary and reciprocating instruments
Júlia Niero Zanatta Streck, Sabrina Arcaro, Renan Antônio Ceretta, Eduardo Antunes Bortoluzzi, Lucas da Fonseca Roberti Garcia, Josiane de Almeida, Patrícia Maria Poli Kopper, Anarela Vassen Bernardi
Restorative Dentistry & Endodontics. 2023; 48
[Pubmed] | [DOI]
7 Factors associated with patients’ rejection of root canal treatment in a tertiary hospital, Southwest Nigeria: A pilot survey
ShakeerahOlaide Gbadebo, GbengaEmmanuel Adebayo
Journal of West African College of Surgeons. 2023; 13(3): 22
[Pubmed] | [DOI]
8 Evaluation of Cytotoxicity of Calcium Silicate-based Mineral Trioxide Aggregate Sealers: A Systematic Review of In Vitro Studies
Nezar Boreak, Mazen Ahmed Qadi, Faisal Hadi Khormi, Luay Mutaen Faqiri, Sadeem Omar Zaylai, Yaser Ali Jad, Bassam Ali Hamdi, Asayil Juraybi
The Journal of Contemporary Dental Practice. 2023; 24(8): 610
[Pubmed] | [DOI]
9 Automation of gutta-percha disinfection
Katta Miranji, Rao T. Venkateswara, Sai Muralinadh R. Venkata, Rongala Arun, V. Ballullaya Srinidhi
i-manager’s Journal on Embedded Systems. 2023; 11(2): 1
[Pubmed] | [DOI]
10 Evaluation of sealing efficacy and removal convenience of sealing materials for implant abutment screw access holes
Huangjun Zhou, Sixian Ye, Xingyu Lyu, Hao Feng, Min Liu, Cai Wen
BMC Oral Health. 2022; 22(1)
[Pubmed] | [DOI]
11 Emergence of Nano-Dentistry as a Reality of Contemporary Dentistry
Orest Kochan, Svitlana Boitsaniuk, Mariana Levkiv, Krzysztof Przystupa, Nadiia Manashchuk, Khrystyna Pohoretska, Natalia Chornij, Iryna Tsvyntarna, Liudmyla Patskan
Applied Sciences. 2022; 12(4): 2008
[Pubmed] | [DOI]
12 Comparison of Two Root Canal Filling Techniques: Obturation with Guttacore Carrier Based System and Obturation with Guttaflow2 Fluid Gutta-Percha
Guido Migliau, Gaspare Palaia, Daniele Pergolini, Tommaso Guglielmelli, Roberta Fascetti, Afrah Sofan, Alessandro Del Vecchio, Umberto Romeo
Dentistry Journal. 2022; 10(4): 71
[Pubmed] | [DOI]
13 Antibacterial efficacy of herbal solutions in disinfecting gutta percha cones against Enterococcus Faecalis
Amulya Vanapatla, Neethu Nanda, Saurabh Satyarth, Sahil Kawle, HarshrajP Gawande, JaitiM Gupte
Journal of Pharmacy And Bioallied Sciences. 2022; 14(5): 748
[Pubmed] | [DOI]
14 A Micro-CT Analysis of Initial and Long-Term Pores Volume and Porosity of Bioactive Endodontic Sealers
Mateusz Radwanski, Michal Leski, Adam K. Puszkarz, Jerzy Sokolowski, Louis Hardan, Rim Bourgi, Salvatore Sauro, Monika Lukomska-Szymanska
Biomedicines. 2022; 10(10): 2403
[Pubmed] | [DOI]
15 Outcome of root canal treatment using warm vertical compaction with bioceramic and resin-based sealers: A randomised clinical trial
Jinghao Hu, Yunjie Zhu, Shuli Deng, Zeji Wang, Fuming He
Australian Endodontic Journal. 2022;
[Pubmed] | [DOI]
16 Predictors of societal and professional impact of Endodontology research articles: A multivariate scientometric analysis
Esma J. Dogramaci, Giampiero Rossi-Fedele
International Endodontic Journal. 2022;
[Pubmed] | [DOI]
17 Cytocompatibility and bioactive potential of AH Plus Bioceramic Sealer: An in?vitro study
José Luis Sanz, Sergio López-García, Francisco Javier Rodríguez-Lozano, María Melo, Adrián Lozano, Carmen Llena, Leopoldo Forner
International Endodontic Journal. 2022;
[Pubmed] | [DOI]
18 Strategies of Bioceramics, Bioactive Glasses in Endodontics: Future Perspectives of Restorative Dentistry
S. Chitra, Nibin K. Mathew, S. Jayalakshmi, S. Balakumar, S. Rajeshkumar, R. Ramya, Dinesh Rokaya
BioMed Research International. 2022; 2022: 1
[Pubmed] | [DOI]
19 Quantitative Analysis of Cone-Beam Computed Tomography Artifacts Induced by Nonmetallic Root Canal Filling Materials Using Different Fields of View: In Vitro Study
Rahaf A. AlMohareb, Reem M. Barakat, Mohamed Mehanny, Guosong Wu
Scanning. 2022; 2022: 1
[Pubmed] | [DOI]
20 Fracture Resistance of Roots Obturated with Resilon and EndoREZ with Self-Adhesive Root Canal Sealers
Ahlam Samran, Adnan Habib, Mazen Doumani, Abdulaziz Samran
Journal of Biomaterials and Tissue Engineering. 2022; 12(3): 569
[Pubmed] | [DOI]
21 Effect of volumetric shrinkage of restorative materials on tooth structure: A finite element analysis
Ankit Nayak, Prashant K Jain, Pavan K Kankar, Niharika Jain
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2021; 235(5): 493
[Pubmed] | [DOI]
22 A comparative study of the effects of gutta-percha solvents on human osteoblasts and murine fibroblasts
Gul Ipek Gundogan, Sare Durmus, Gulgun Cansu Ozturk, Nazmi Kucukyesil, Yasin Talat Acar, Rumeysa Balaban, Cenk Kig
Australian Endodontic Journal. 2021;
[Pubmed] | [DOI]
23 Alkaline conditions can affect the volume and chemical characteristics of dental gutta-percha
Amre R. Atmeh, Madi AlMadi, Emad AlShwaimi
Australian Endodontic Journal. 2021;
[Pubmed] | [DOI]
24 Adaptation of a microCT facility for automatic recognition of bioceramic-based sealers in molar root canals aimed at endodontic treatment quality control
Mauro Valente, Facundo Mattea, Gabriela Martín, Teresa Moyano, Pedro Pérez
X-Ray Spectrometry. 2021;
[Pubmed] | [DOI]
25 Synthesis of bimetallic nanoparticles loaded on to PNIPAM hybrid microgel and their catalytic activity
Mohib Ullah Kakar, Khakemin Khan, Muhammad Akram, Rokayya Sami, Ebtihal Khojah, Imran Iqbal, Mahmoud Helal, Abdul Hakeem, Yulin Deng, Rongji Dai
Scientific Reports. 2021; 11(1)
[Pubmed] | [DOI]
26 Antimicrobial Properties of Silver Nitrate Nanoparticle and Its Application in Endodontics and Dentistry: A Review of Literature
Lakshmi Thangavelu, Abdul Habeeb Adil, Sohaib Arshad, Ezhilarasan Devaraj, Sreekanth Kumar Mallineni, Rishitha Sajja, Anil Chakradhar, Mohmed Isaqali Karobari, Jianbo Yin
Journal of Nanomaterials. 2021; 2021: 1
[Pubmed] | [DOI]
27 Regenerative Therapy Modality for Treatment of True Combined Endodontic-Periodontal Lesions: A Randomized Controlled Clinical Trial
Reham AlJasser, Sundus Bukhary, Mohammed AlSarhan, Dalal Alotaibi, Saleh AlOraini, Syed Rashid Habib
International Journal of Environmental Research and Public Health. 2021; 18(12): 6220
[Pubmed] | [DOI]
28 Nanomaterials Application in Endodontics
Wojciech Zakrzewski, Maciej Dobrzynski, Anna Zawadzka-Knefel, Adam Lubojanski, Wojciech Dobrzynski, Mateusz Janecki, Karolina Kurek, Maria Szymonowicz, Rafal Jakub Wiglusz, Zbigniew Rybak
Materials. 2021; 14(18): 5296
[Pubmed] | [DOI]
29 Mast Cells in Periapical Pathology of Endodontics: Is There a Contribution to Systemic Disease?
Nevio Cimolai
International Journal of Oral-Medical Sciences. 2021; 20(1): 74
[Pubmed] | [DOI]
30 Prevalence of Bacteria of Genus Actinomyces in Persistent Extraradicular Lesions—Systematic Review
Mario Dioguardi, Vito Crincoli, Luigi Laino, Mario Alovisi, Diego Sovereto, Lorenzo Lo Muzio, Giuseppe Troiano
Journal of Clinical Medicine. 2020; 9(2): 457
[Pubmed] | [DOI]
31 Oxidative stress induced antimicrobial efficacy of chitosan and silver nanoparticles coated Gutta-percha for endodontic applications
A. Mohan, S. Dipallini, S. Lata, S. Mohanty, P.K. Pradhan, P. Patel, H. Makkar, S.K. Verma
Materials Today Chemistry. 2020; 17: 100299
[Pubmed] | [DOI]
32 Harnessing biomolecules for bioinspired dental biomaterials
Nicholas G. Fischer, Eliseu A. Münchow, Candan Tamerler, Marco C. Bottino, Conrado Aparicio
Journal of Materials Chemistry B. 2020; 8(38): 8713
[Pubmed] | [DOI]
33 Root Surface Temperature Increases during Root Canal Filling In Vitro with Nd:YAG Laser-Softened Gutta-Percha
Blazej Podolak, Alicja Nowicka, Krzysztof Wozniak, Liliana Szyszka-Sommerfeld, Wlodzimierz Dura, Mariusz Borawski, Elzbieta Dembowska, Mariusz Lipski
Journal of Healthcare Engineering. 2020; 2020: 1
[Pubmed] | [DOI]
34 Comparative Evaluation of Efficacy of ProTaper® Universal Rotary Retreatment System for Gutta-percha Removal from Single Root Canals, Obturated with Two Different Techniques: In Vitro Cone-beam Computed Tomography Study
Gaurav Sharma, Krishna P Lashkari, Alka Shukla, Chittenahalli N Vijay Kumar
Conservative Dentistry and Endodontic Journal. 2019; 4(2): 30
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  

    Evolution of Gut...
    Chemical Phases ...
    Physical and The...
    Physical Forms o...
    Modifications of...
    Clinical Conside...
    Biological Prope...
    Merits and Demer...
    Other Uses of Gu...
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded1269    
    Comments [Add]    
    Cited by others 34    

Recommend this journal