ORIGINAL ARTICLE |
|
Year : 2015 | Volume
: 18
| Issue : 1 | Page : 47-50 |
|
In vitro viability of human periodontal ligament cells in green tea extract
Maryam Ghasempour1, Ali Akbar Moghadamnia2, Zeynab Abedian3, Mahdi Pour Amir4, Farideh Feizi3, Samane Gharekhani1
1 Department of Pediatrics, Faculty of Dentistry, Babol University of Medical Sciences, Babol, Iran 2 Department of Pharmacology and Physiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran 3 Department of Cellular and Molecular Research Centre, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran 4 Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
Correspondence Address:
Dr. Samane Gharekhani Department of Pediatric, Faculty of Dentistry, Babol University of Medical Sciences, Babol Iran
 Source of Support: Babol University of Medical Sciences, Conflict of Interest: None  | Check |
DOI: 10.4103/0972-0707.148894
|
|
Context: Delayed replantation of avulsed teeth may be successful if the majority of periodontal ligament cells (PDL) survive. A proper transport medium is required when immediate replantation is not possible. Green tea extract (GTE) may be effective in preserving the cells because of its special properties.
Aims: This study was done to evaluate the potential of GTE in periodontal ligament cells preservation.
Materials and Methods: Fifty-four extracted human teeth with closed apices were randomly divided into three groups each with 18 teeth as follow: GTE, water (negative control), and Hank's balanced salt solution (HBSS) (positive control). The specimens were immersed in the media for 1, 3, and 15 hours at 4 o C (n = 6) and treated with collagenase 1A for 45 minutes. Cell viability was determined using the trypan blue exclusion technique.
Statistical Analysis: Data were analyzed by one-way analysis of variance (ANOVA), post hoc Tukey and paired t-test at significance level of P < 0.05.
Results: Means (standard deviation, SD) of viable cells in HBSS, water, and GTE were estimated 348.33 ± 88.49, 101 ± 14.18, and 310.56 ± 56.97 at 1 hours; 273.4 ± 44.80, 64.16 ± 16.44, and 310.2 ± 11.21 at 3 hours; and 373.72 ± 67.81, 14.41 ± 2.88 and 315.24 ± 34.48 at 15 hours; respectively. No significant differences were found between HBSS and GTE at all the time intervals. Both these solutions could preserve the cells more than water significantly.
Conclusion: GTE and HBSS were equally effective in preserving the cells and were significantly superior to water. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|